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Abstract—This study aims to model the effect of local 
climate on energy generation in power plants in the United 
States. It considers climate change as well as the ever-growing 
electricity demand, contributing to greenhouse gas emissions. 
We propose an integration of AI-based and domain-specific 
paradigms via a hybrid approach of convolutional neural 
networks (CNN) & long short-term memory (LSTM) coupled 
with environmental models. Erstwhile studies focus mainly on 
specific energy sources, e.g. solar/wind power. There is a need 
for more comprehensive examination, e.g. temperature effects 
across various energy generation types at the macro level of 
states and micro level of power plants. This forms the major 
focus and novelty of our study. Fathoming the factors driving 
temperature-energy correlations, and assessing power plant 
vulnerability to changing climate patterns, are both essential 
to promote energy infrastructure resilience and sustainability. 
Our study offers novel insights into the complex interplay of 
temperature, energy generation, sustainability and related 
aspects to enable enhanced macro & micro level decision-
making in energy sector. It therefore makes contributions to 
smart environment goals for smart cities and a smart planet. 

Keywords— CNN, Climate Studies, Electricity, Energy, LSTM, 

Predictive Modeling, Smart Environment, Smart Cities  

I. INTRODUCTION 

Energy consumption is a major driver of economic growth 

& environmental impact. Studying patterns in energy usage 

holds tremendous importance for addressing challenges in 

sustainable energy management. AI can play a role here.  

    Background: Global energy use is affected by climatic 

factors, e.g. temperature, socio-economic variables such as 

population demographics etc. Adequate climate-energy 

analysis is crucial in effectively planning the distribution 

and hence optimizing energy usage [1]. Due to climate 

change and drastic fluctuations in global temperature, there 

is more demand for electricity. As energy usage increases, 

greenhouse gas (GHG) emissions rise substantially. In the 

U.S., the electric power sector contributes to 31% of carbon 

dioxide (CO2) emissions [2]. Global energy demands are 

rising, along with related emissions, and are expected to 

rise further due to greater urbanization, unless proactive 

measures are taken soon [3]. Climatic factors, particularly 

temperature, have much impact on energy demand-supply 

[4]. Energy use is closely tied to the weather, where energy 

consumption rises with a peak in increase/decrease of 

temperature [2]. Changes in energy demand will inevitably 

affect GHG emissions, but overall effects depend on energy 

sources for electricity/heating, including alternative ones.  

     Motivation: Most power companies lack consideration 

of climate impacts in development strategies today, which 

can lead to overestimation of capacity for future demands, 

causing electricity shortages [5]. As much as the energy 

sector contributes towards climate change, it is impacted by 

the effects of climate change. Generation of electricity can 

be affected, e.g. climate change can cause droughts. It can 

affect hydroelectricity depending on streamflow, impact 

thermal power plants requiring cooling water to generate 

electricity at full capacity [6,7] etc. Climate change can 

severely compromise resilience and reliability of current 

energy systems. Yet, analyzing comprehensive effects of 

temperature and climate change on electric power systems 

is limited in existing studies [8-14], leaving many gaps due 

to which authorities have very few options to assess the 

infrastructure reliability (primarily relying on historical 

climate conditions). Local weather conditions are vital in 

influencing power generation [7]. Fathoming the macro and 

micro dynamics of power generation and demand can thus 

assist stakeholders (e.g. grid operators, policymakers) to 

make macro & micro level decisions in the energy sector. 

   Problem Definition: Motivated by this background, our 

work in this paper has the following main goals.  
1. Investigate existing correlations between local plant 

power generation, local temperature, and state-level power 

demand, to analyze trends, and identify interdependencies.  

2. Assist stakeholders to make better decisions to optimize 

generation & distribution of energy resources, contributing 

to the complex macro & micro dynamics of energy.  

    Approach & Contributions: Environmental modeling 

entails mathematical or computational models to simulate 

behavior and interactions of energy systems. These models 

can capture complexities of energy generation, distribution 

& consumption to fathom system behavior under different 

scenarios. Machine learning methods, e.g. convolutional 

neural networks (CNN), can play important roles here from 

the AI perspective. Yet, AI-based modeling alone can often 

face problems due to lack of adequate domain knowledge, 

limited interpretability and other issues. In this work, an 

amalgamation of AI-based and domain-specific paradigms 

is proposed via a hybrid approach of CNN-LSTM modeling 

integrated with environmental modeling for comprehensive 

energy analysis at a macro & micro level. It entails various 

factors encompassing power generation and temperature 

measurements. Our major contributions are as follows.   

• Comprehensive study of multiple energy sources 

from environmental data repositories with a strong 

emphasis on climatic factors 

• Use of macro & micro level dynamics, scalable 

with modification to other research on applied AI 

• Amalgamation of AI-based and domain-specific 

modeling for climate-energy analysis  

• Hybrid CNN & LSTM adaptation, leveraging their 

best features for exemplification in further work 

II. LITERATURE REVIEW 

    Traditional forecasting models often rely on time-series 

analysis, and autoregressive integrated moving average 

(ARIMA), mostly showing linear relationships. Machine 

learning models are better for nonlinear relationships and 

complex patterns. Studies show high accuracy of neural 

networks to capture nonlinear dynamics of the system [9]. 



Monitoring energy use, e.g. load monitoring of appliances, 

or of buildings as a whole, can lead to reduced energy 

consumption [10]. Neural network capability to incorporate 

diverse and dynamic inputs (weather data, market prices, 

consumer behavior etc.) into energy forecasting models 

helps find intricate relationships between such variables 

and energy, offering accurate predictions to guide decisions 

for a more sustainable energy management future. In a 

recent study [11], a model incorporated climate data and 

building characteristics for improved pre-design of heating 

and cooling of buildings. Lim et al. [12] used a CNN-

LSTM model for stable solar power generation forecasting 

(CNN to categorize weather conditions, LSTM to learn 

solar power generation patterns based on them). Zhang et 

al. [13] deployed an ultra-short-term load forecast model 

based on temperature factor weight and LSTM to analyze 

power consumption and temperature by using a feedback 

temperature factor weight. Their results helped to reduce 

prediction error, to reduce operating costs.  
     In smart cities, where energy systems are interconnected 

and complex, such models can help reduce GHG emissions 

[14]. It is noted that 64% of the total emission from the 

electric power sector in the US comes from residential 

areas with over 100 million urban households, consuming 

over 7,500 trillion BTU energy in 2020 alone (more than 

half of the total energy consumed). However, the per capita 

consumption rates of cities are the lowest per household 

[2]. This offers the scope for being more efficient. Many 

studies reveal that machine learning can help in reduction 

of energy usage in buildings via adaptive usage patterns, 

and more automation in devices and systems [1]. Machine 

learning methods can predict cost savings for consumers 

while reducing carbon footprint of buildings. As real-time 

data is used in smart cities, CNN-LSTM models can be 

used to help optimize energy use, reduce peak loads, and 

enhance overall system efficiency [14].  

    Although numerous studies have explored relationships 

between temperature and energy generation, there are many 

research gaps. Most studies focus on temperature impacts 

over energy generation from specific sources, e.g. solar / 

wind power [12]. There are gaps on comprehensive effects 

of temperature on various types of energy generation as a 

whole. Moreover, while the influence of temperature on 

energy generation has been acknowledged [12], there is a 

need for investigation into the underlying factors that drive 

this relationship, and how it can affect the supply chain of 

energy. These and other aspects motivate further research. 

Our work in this paper can offer valuable insights into the 

interplay of temperature, energy generation, sustainability, 

and related aspects via AI-based modeling merged with 

environmental modeling, at a macro & micro level.  

III. PROPOSED METHODOLOGY: HYBRID CNN-LSTM 

We propose a methodology for energy analysis by climate 

based on an amalgamation of environmental and AI-based 

paradigms. This entails environmental modeling coupled 

with CNN and LSTM thus constituting a hybrid CNN-

LSTM model. It is described in the next subsections.  

A.  Environmental Modeling and Data Harvesting 

Datasets on temperature and energy generation in local 

power plants in the 48 states of the continental United 

States (excluding Hawaii and Alaska) are harvested in this 

work. Historical weather data entails local temperature 

averages, from models in NOAA (National Oceanic and 

Atmospheric Administration) NCEI (National Center for 

Environmental Information). The models leverage domain 

knowledge in environmental science and management. 

Data on the aforementioned sources is harvested from local 

climate stations. This helps to collate useful information on 

monthly and daily temperature averages, longitude, and 

latitude. Likewise, energy generation datasets are harvested 

from multiple energy sources of different models in the 

U.S. EIA (Energy Information Administration) as follows. 
1. Inventory of Operable Generators [EIA-860M] 

2. Monthly Generation by Plant [EIA-923] 

3. Monthly Electric Power Industry Report [EIA-861M] 

4. Electric Power Operations (Daily and Hourly): Daily 

Demand by Subregion [EIA-930] 

These datasets model information on the type of fuel, 

energy statistics, location of the powerplant (longitude, 

latitude, state), consumers, price, revenue etc. The data is 

collated for January 2018 to December 2022.The dataset 

with combined energy generation data has 200,526 rows of 

data and the temperature dataset has 169,932 rows. Table I 

and Fig. 1 provide relevant snapshots of the data.   

TABLE I. DATA HARVESTED BY ENVIRONMENTAL MODELING 

Attr. 

Net 

Generation 

(MWh) 

Fuel 

Consumption 

(BTUs) 

Total 

Consumption 

(BTUs) 

Temperature 

(°C) 

Mean Min. Max. 

mean 83,728.4 774,151.40 832,123.60 10.6 16.4 4.7 

std 232,162.7 2,269,354.00 2,279,946.00 9.9 10.6 9.6 

min -20,897.0 1.00 1.00 -21.8 -16.4 -28.9 

med 4,621.5 43,643.00 55,599.50 10.6 16.7 4.4 

max 2,987,699.0 31,197,000.00 31,197,000.00 37.4 45.8 31.8 

  

  

Fig. 1 Map of the US with distribution of average monthly net energy 

generation (Left), Distribution of average monthly temperatures (Right) 

The environmentally modeled data is pre-processed using 

machine learning methods. This is to ensure that the data is 

consistent, accurate, and suitable for analysis by the CNN-

LSTM model. In the powerplant dataset obtained by the 

concerned environmental models, the pre-processing steps 

are as follows: (1) remove missing values; (2) drop rows 

with numerical cells equal to zero; (3) exclude rows where 

the fuel type is not "ALL"; (4) sort data by datetime; (5) 

select relevant attributes (timestamp, latitude, longitude, 

generation, total-consumption-btu, consumption-for-eg-

btu); (6) drop rows located outside the US48 range. In the 

temperature dataset, the following pre-processing steps are 

executed: (1) remove missing values; (2) sort data based on 

datetime; (3) select relevant attributes (timestamp, latitude, 

longitude, max, min, mean temperature); (4) drop rows that 

fall outside the US48 range. Thereafter, the environmental 



datasets are merged by longitude, latitude. In the process of 

merging datasets, our algorithm begins by looping through 

the energy records in chronological order. The temperature 

data is utilized to construct a search tree, which is rebuilt 

whenever a change in period data is detected. This ensures 

that the search trees only contain records for a specific 

timestamp (YYYY-MM). Each energy record is compared 

against temperature records stored in the search tree. The 

best match(es) can be determined using Euclidean distance, 

incorporating latitude, longitude. Here ‘'i’’ depicts number 

of temperature readings around the powerplant to create the 

average temperature (T) for a given plant. The number of 

readings can be initialized using domain knowledge, and 

further refined in our approach (as revealed in experimental 

results). For more than one match (Ti>1), temperatures are 

combined to calculate an average temperature, each value 

being weighted based on its respective distance from the 

plant using a linear weighting approach. This is guided by 

domain knowledge in environmental science. Additionally, 

the timestamp feature is split into year and month, and the 

distances of temperatures for a given plant are combined to 

calculate an average distance. As a next step, statistical 

analysis with z-score normalization occurs. The average 

distance is used to establish a lower & upper fence, and any 

outliers beyond these fences are eliminated. Following the 

outlier detection and removal, the data is thus normalized. 

Numerical attributes are normalized by a MinMaxScaler, 

and categorical attributes using a OneHotEncoder. 

 

B. AI-Based Modeling with CNN-LSTM 

 
Fig. 2 CNN-LSTM Proposed Framework 

In the AI-based modeling, the proposed method is a hybrid 

CNN-LSTM model. This is harnessed for modeling the 

effect of local temperature averages on energy generation 

in local power plants in the U.S. Fig. 2 illustrates the 

structure of the proposed hybrid CNN-LSTM model in our 

work.  This model combines the strengths of both CNN and 

LSTM to capture spatial and temporal correlations within 

the environmental datasets as follows. The CNN model has 

three CNN layers and a max-pooling layer. After the first 

convolutional layer analyzes the data, it shows the 

discovered feature map. Thereafter, the second later repeats 

this process, and finally the third later amplifies the 

features. The max-pooling layer simplifies the feature maps 

by retaining the highest signals, preserving one-quarter of 

the original values and reduces the complexity of feature 

maps by retaining the highest signals. The flattened feature 

maps are then transformed into a long vector, and the repeat 

vector layer connects the input and output sequences by 

repeating the internal representation each step again. The 

extended short-term memory decoder has three LSTM 

layers to generate values for each forecasted interval. Time-

distributed layers are employed before the final output layer 

to explain each step. The dense layer uses learned weights 

to make complex decisions based on the extracted features, 

ultimately producing the output. Dropout is a regularization 

technique that prevents overfitting by randomly dropping 

out layer outputs during training. This improves robustness 

of the model and reduces reliance on specific neurons.  

 

Algorithm 1:  Hybrid CNN-LSTM Modeling 

1. Input: Data Δ   // Environmentally modeled climate-energy data  

2.Curate Δ with domain knowledge  

i. Merge Δ by latitude, longitude as (ψ, θ) 
ii. Normalize {ΔN} by Min-Max Scaling // Numeric data 

iii. Modify{ΔC} by One-Hot encoding   // Categorical data  

iv. Return derived data as Δ (X, Y) attribute-values 
3. Remodel XSHAPE [0] to XSHAPE [1], Reshape Y as η lists, 1 value each 

4. Create model μ with inputs: 

i. Convolutional Layers in CNN: CL = 3 
ii. MaxPool Layers: ML = 1, Flatten Layers: FL =1 

iii. LSTM Layers: LL = 3 (tanh activation) 

iv. Dense Layer: DE = 1 (128 neurons), Dropout Layer: DO = 1 
v. Output Layer: OL = 1 

5. Set Filters γ = 64, Kernel-size κ = 3, Activation α = ReLU  

6. Set LSTM_units: υ = 50 
7. Set Dropout_rate: δ = 1%, Learning_rate: λ = 0.1%  

8. Compile μ with: 

i. Root Mean Squared Error RMSE, Adam optimizer AO  
9. Set early callback value = ε, patience ρ = 5, restore-best-wgt ω = True 

10. Initiate step decay function σ: 

i. σ = 0.001 
ii. σ = 0.9 * σ ^ [FLOOR (1 + τ)]         // τ: number of epochs 

11. If plateau with factor Φ = 0.5, ρ = 1, then reduce λ  

12. Fit μ with Δ (XTRAIN, YTRAIN) 
i. Batch-size = β, Epochs = τ 

ii. Validation-data = Δ (XVAL, YVAL) 

iii. Set ε with reduced λ 

13. Evaluate μ on remaining Δ(XTEST, YTEST) 

14. Output: Return output Ω via OL    // Learned hypothesis on model      
 

 

Algorithm 1 presents the pseudocode to demonstrate the 

hybrid CNN-LSTM model adapted for our climate-energy 

analysis. Combining convolutional and LSTM layers has 

the effect of diversification. This creates a dynamic setup 

to predict energy generation encompassing environmental 

modeling features. It aims to merge the best of both worlds.  

 

C. Model Training and Evaluation 

The CNN-LSTM model executes on curated environmental 

data to conduct energy analysis. Python’s Scikit Learn is 

used for programming in the overall implementation. The 

model is then subjected to evaluation. For this purpose, the 

data is split into training, validation, and test sets of varying 

sizes. The training set is used to train the model, validation 

set for tuning hyperparameters & model selection, and test 

set for evaluating final performance of the trained model on 

unseen data. Performance is evaluated by measuring error, 

which is calculated as validation loss here. Validation loss 

can indicate how well our CNN-LSTM model predicts net 

energy generation. In this paper, the following metrics are 

used: Mean Absolute Error (MAE), Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE). Table II shows 

validation loss (val_loss) of the model with Ti. The model 

is optimized for Ti = 1; the temperature reading closest to 

a given power plant calculated using Euclidean distance.  



IV. EXPERIMENTAL RESULTS AND DISCUSSION 

In this study, the optimization of the model is aimed at 

considering different average temperature ranges, depicted 

by Ti. Fig. 3 synopsizes our experimental results. Table II 

displays validation loss for different temperature readings.  

 
Fig 3. Mean Absolute Error (MAE) of the model for different aggregate 

temperatures (Ti, where ‘'i’ is number of temperature readings on the 
powerplant to create the average temperature (T) for a given plant. 
 

TABLE II. VALIDATION LOSS WITH TEMPERATURE MEASUREMENTS 

Ti MAE MSE RMSE 

Ti = 1 0.0631 0.0259 0.1392 

Ti = 3 0.0616 0.0243 0.1297 

Ti = 5 0.0538 0.0228 0.1279 

Ti = 7 0.0533 0.0222 0.1282 

Ti = 9 0.0519 0.0221 0.1272 

Ti = 11 0.0529 0.0293 0.1315 

Ti = 13 0.0522 0.0224 0.1279 

Ti = 15 0.0536 0.0248 0.1284 

Ti = 17 0.0554 0.0261 0.1373 

Ti = 19 0.0622 0.0258 0.1389 

Ti = 21 0.0927 0.0346 0.1423 
 

    It is observed that as the value of Ti increases (indicating 

a larger average temperature range around the power plant), 

an improvement in the model’s performance is noticed (as 

per the loss metric). It can be initially recommended that 

the model becomes more proficient in predicting energy 

generation patterns by considering a broader range of 

temperature data along with the constant factors of time and 

fuel consumption. However, as Ti is further increased and 

reaches around Ti=15, a deterioration in the model's 

performance is observed. It shows that the model gets 

overly generalized. Consequently, an increase in loss is 

observed, indicating a decline in the model's predictive 

capability. In the experiments shown here, Ti=9 and Ti=13 

exhibit better performance across all evaluation metrics 

compared to Ti=11. While this is a correlation and not 

essentially a causality, it indicates that these specific ranges 

can improve predictive accuracy, giving closer alignment 

with actual energy generation patterns. More inferences can 

be drawn via domain knowledge (listed in Conclusions).  

The CNN-LSTM model reaffirms that temperature has a 

dual impact on energy-related processes. It is noticed that 

on a micro level (power plant), temperature affects the 

efficiency of converting fuel into energy; whereas on a 

macro level (state-wide), temperature influences energy 

demand directly. In our experiments Ti = 9, yields the best 

results in capturing micro-to-macro relationships, as the 

MAE, MSE and RMSE are comparably the lowest (0.0519, 

0.0221, and 0.1272 respectively) indicating this to be a near 

optimal number. A possible explanation from a domain-

specific angle is that Ti=9 and Ti=13 depict the average 

temperature ranges on the most notable variations in 

temperature relevant to energy generation. They can map 

to temperature thresholds / conditions having a more direct 

impact on the efficiency and performance of power plants. 

Indirect effects can be due to electricity demand affected 

by temperature. Additionally, Ti=9 and Ti=13 can be 

temperature variations more representative of certain 

geographical locations or climate conditions where power 

plants are situated. Different regions often tend to exhibit 

temperature patterns and sensitivities to energy generation. 

Hence, by considering average temperature ranges aligning 

closely with local climate characteristics, the model can 

better capture nuanced relationships between temperature 

and energy generation. It shows the importance of micro & 

macro scaled research for more comprehensive analysis of 

relationships in energy management. It helps in improving 

energy efficiency and heads towards optimization. 

V. IMPACT ON SMART CITIES 

The findings of this study have implications for smart cities 

and sustainability. Integrating real-time temperature data 

into smart city infrastructure allows dynamic adjustments 

in energy production and distribution, while maximizing 

resource utilization. For instance, Fig. 4 offers a visual 

depiction of prediction results for energy consumption 

using our hybrid modeling approach. It is seen that as Ti 

increases, the graph forms a narrower bell curve, implying 

greater stability or predictability in energy generation in 

response to temperature variations. It can be advantageous 

to stakeholders for planning and optimizing power plant 

operations. Moreover, accurate depiction of temperatures 

around each power plant tends to increase the precision of 

subsequent analyses. Here, left-most clusters (blue) show 

colder climatic conditions whereas right-most clusters (red) 

show warmer ones. It reveals that power generation is 

maximized when average monthly temperature around a 

power plant falls between -10°C, 10 °C. A general upward 

trend from -25°C to -5°C can be associated with increase in 

consumer-demand for electricity in colder temperatures; 

the downward trend from 10°C to 20°C can be associated 

with the lower capacity of power lines at high temperatures. 

Such inferences from our hybrid CNN-LSTM modeling for 

energy analysis can help in smart city planning and smart 

grid development. For example, it is evident that prediction 

results for energy consumption are better for Ti=5 than for 

Ti=1, and further better for Ti=13, but almost similar for 

Ti=13 and Ti=21. Hence, it could be more optimal to select 

Ti=13 for smart grid layouts in smart cities.  

     Our work in this paper can be orthogonal to other studies 

[14, 15]. On a related note, regions with more alternative 

fuel vehicles (AFVs) are associated with regions having 

better air quality [16]. Hence, smart grids to optimize the 

charging and discharging of electric vehicles based on 

temperature conditions, can be suitably designed via results 

of studies such as ours. This is in order to improve energy 

efficiency and reduce carbon footprint in transportation.  



 

 

 
Fig 4. Prediction results for Net Energy Generation (MWh) for various 

Ti values where ‘'i’ is the number of temperature readings surrounding 

the power plant to create the average temperature (T) for a given plant. 

    Likewise, adapting more sustainable AI with machine 

learning techniques to create strategies for electric vehicle 

ride-sharing can result in fuel-saving, and decarbonization 

analogous to other work [17]. By incorporating renewable 

energy and advanced energy management, via more well- 

informed decision-making with AI-based and domain-

specific paradigms, integrated energy systems can help 

mitigate air pollution in smart cities. Our work in this paper 

can make modest contributions to such initiatives.  

VI. CONCLUSIONS AND FUTURE WORK 

Our research emphasizes amalgamating AI-based models 

with domain-specific models for analysis. It is exemplified 

with climate-energy analysis via hybrid CNN-LSTM and 

environmental modeling.  Our key findings are as follows.  

1.Power generation is maximized when average monthly 

temperature surrounding a power plant is -10 °C to 10 °C. 

2. Upward trend from -25°C to -5°C is associated with an 

increase in consumer demand for electricity or associated 

with climates in areas where people choose to live. 

3. Downward trend from 10°C to 20°C is associated with 

the lower capacity of power lines at high temperatures. 

4. At the micro level there is a strong correlation between 

the power each plant generates and temperature around it. 

5. Correlations at the micro level are more complex than 

the macro level because of added layer of variables. 

    Stakeholders can make better decisions based on such 

findings to mitigate energy waste & CO2 emissions. Smart 

city planners can use the discovered knowledge for energy 

conservation, load balancing, and smart grid layouts. While 

we identify macro / micro levels as state / power plant, 

other studies can use different mappings for macro & micro 

scales, with lessons learned from our study for more well-

grounded decision-making. To the best of our knowledge 

our study in this paper is among the first on comprehensive 

climate-energy analysis using multiple sources at macro & 

micro levels via integrating AI-based and domain-specific 

methods by hybrid CNN-LSTM & environmental models. 

     Future work can entail comparing seasonal differences, 

identifying gaps in demand and supply of power during 

various seasons, correlating states with residential sector / 

commercial sector, and analyzing demand of electricity by 

industry and geography. Questions can be raised as follows.  

1. Does energy source of the power affect CO2 emissions?  

2. How does it correlate with socio-economic conditions? 

This can blend machine learning and predictive models into 

smart city infrastructure for proactive energy management 

and good demand-response mechanisms. Our study thus 

paves the way for more innovative solutions towards a 

smart environment in smart cities and a smart planet.   
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